

SIZE	STEM LENGTH mm	Neck* LENGTH mm	Offset*	НАС
7	120	28	37	4307
8	124	29	38	4308
9	128	31	39	4309
10	132	32	40	4310
11	136	33	41	4311
12	140	35	42	4312
13	144	36	43	4313
14	148	37	44	4314
15	152	39	45	4315
16**	156	40	46	4316
17**	160	41	47	4317
18**	165	43	48	4318

^{*} For a medium neck

FIXATION OF THE FEMORAL HEADS

Fixation by a 12/14 cone with an angle of $5^{\circ}42'$.

reduction of the stresses at the alumina-titanium interface.

Al₂O₃ ISO 6474						
Ø mm	Description		Reference			
32	Short neck	-4	2003			
32	Medium neck	0	2004			
32	Long neck	+4	2005			
28	Short neck	-3,5	2000			
28	Medium neck	0	2001			
28	Long neck	+3,5	2002			
STAINLESS STEEL ISO 5832-9						
32	Short neck	-4	2220			
32	Medium neck	0	2221			
32	Short neck	+4	2222			
32	Long neck	+8	2263			

STAINLESS STEEL ISO 5832-9					
Ø mm	Description	Reference			
28	Short neck	-3,5	2223		
28	Medium neck	0	2224		
28	Long neck	+3,5	2225		
28	Extra long neck	+8	2261		
28	Extra long neck	+12	2262		
22,2	Short neck	-3,5	2217		
22,2	Medium neck	0	2218		
22,2	Long neck	+3,5	2219		

THE MULTICONES CERAFIT STEMS

REFERENCES

MULTICONES Cerafit Stem H-A.C.			
4307			
4308			
4309			
4310			
4311			
4312			
4313			
4314			
4315			
4316			
4317			
4318			

^{*} Special implants available on request

Document intended for the exclusive use of healthcare professionals. HAC CERAFIT Stem® - hip prosthesis - is a class III CE marked medical device made by CERAVER -LES LABORATOIRES OSTEAL MEDICAL Company and for which Conformity assessment was carried out by Notified Body G-MED n°0459. HAC CERAFIT Stem prosthesis is intended to replace completely a hip joint that cannot be treated through other therapies. Before any surgical procedure, read carefully instructions for use and surgical technique. For proper use and installation of these devices, qualified professionals must use instruments of the associated kit

GMED ISO 13485

CERAVER - LES LABORATOIRES OSTEAL MEDICAL 69, RUE DE LA BELLE ÉTOILE 95957 ROISSY CDG CEDEX - FRANCE TEL.: (+33) 1 48 63 88 63 - FAX: (+33) 1 49 89 05 05 WWW.CERAVER.COM - CONTACT@CERAVER.COM

CERAVER OSTEAL AMERICA INC. 2277 GUENETTE SAINT LAURENT QUEBEC H4R 2E9 TEL: + 19 1 514 856 2435 FAX: + 19 1 514 856 2444 coai@gc.aira.com

BELTRAN BAGUENA, 5-10-10 46009 VALENCIA TEL: +34 96 348 10 17 FAX: +34 96 348 10 02 info@ceraver.es

CERAVER IBERICA

CERAVER ITALIA VIA PRATI, 29 40012 CALDERARA DI RENO (BO) TEL: +39 051 72 88 76 FAX: +39 051 72 78 03

info@ceraver.it

CERAVER SOUTH AFRICA (PTY) LTD 11 POLO CRESCENT WOODMEAD OFFICE PARK, WOODMEAD, 2191, SANDTON, GAUTENG - SOUTH AFRICA TEL: + 27 11 656 3719 FAX: + 27 865 474 635

(€

0 4 5 9

THE MULTICONES CERAFIT STEM

THE MULTICONES STEMS HAC

^{**} Special implants available on request

ARTICULAR MOBILITY

THE MULTICONES CERAFIT STEM

HISTORY: 1974: FIRST CEMENTLESS STRAIGHT STEM

In 1974, CERAVER developed a press-fit cementless straight stem for metaphyso-diaphyseal filling. This stem had longitudinal sections in truncated taper shape, and quadrangular transverse sections permitting excellent stability in rotation.

In terms of the implant surface finish, we chose a polished surface to avoid the release of metallic particles and its consequences. This was a very bad choice at the time, since large number of authors subsequently demonstrated, that only a roughened surface finish permits the bone ingrowth in contact with a titanium implant.

The clinical results have shown evidence that a stem with quadrangular transverse sections has excellent stability in rotation and that the majority of failures were due only to the polished surface.

OBJECTIVES AND CONCEPTS

In view of the above observations, we decided to retain the same OBJECTIVES for the new implant: primary stability, secondary stability and preservation of the bone stock.

In order to meet these objectives, we adopted the CONCEPTS which we originally used for the first cementless stem and also some of the concepts from our OSTEAL cemented stem:

- A cervico-diaphyseal angle of 132°, an anatomical/biomechanical compromise.
- A medial curve avoiding post-operative varisation.
- Large sections with relatively sharp angles, a compromise between stress distribution and antirotation.
- Truncated taper shapes to guarantee excellent primary stability, a 6° angle in the frontal plane and a 2° angle in the diaphyseal sagittal plane.
- A relatively long length, 136 mm for the most commonly used size 11, permitting better stress distribution and avoiding varisation and incorrect insertion.
- Neck length and lateralization, increasing according to size, to restablish normal anatomy and biomechanics.

THE MATERIAL: TIAI₆V₄ TITANIUM ALLOY

June 1972: First implantation in the world of a titanium alloy femoral stem by CERAVER.

After more than 35 years of implantation, this material remains the best metal alloy adapted to the specifications of femoral implants. It is the reference for cemented and cementless femoral stem.

THE OBJECTIVES

PRIMARY STABILITY

To minimize micromovements in 3 greas

- Rotation
- Post-operative « varisation »
- Distal migration

SECONDARY STABILITY

Bone ingrowth on the implant

BONE STOCK PRESERVATION

Primary stability, secondary stability and bone stock preservation are the major objectives for the long-term stability of a cementless stem.

Rough surface M.E.B. of the surface of rough TiAl₆V₄

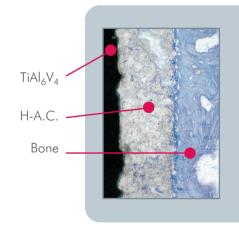
THE CONCEPTS

PRIMARY STABILITY

- Quadrangular transverse sections
- "Multicones" in all 3 planes
- Anterior and posterior metaphyseal fins

Post-operative varisation

- Medial curve
- Stem lenght


Distal migration

- Metaphyso-diaphyseal contact
- « Multicones » in all 3 planes

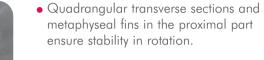
SECONDARY STABILITY

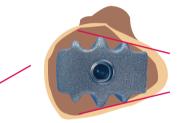
Bone ingrowth on the implant :

- With a rough surface
- With the HA coating

H-A.C. Hydroxyapatite coating $Ca_{10} (PO_4)_6 (OH)_2$

Biocompatible, bioactive and osteoconductive


LONG LENGTH



- Optimal contact and fit with metaphysis and diaphysis.
- Increase area of contact between bone and implant.
- Self-alignment in the femur.
- Reduction in risk of post-operative varisation.

QUADRANGULAR SECTIONS

CONSIDERATIONS RELATING TO THE CONCEPTS

• Quadrangular transverse sections in the middle and distal sections to prevent rotation

Primary stability to allow bone ingrowth on the implant and preservation of bone stock are the major objectives guaranteed for the long-term stability of a cementless implant.